Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570505

RESUMO

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Assuntos
Caenorhabditis elegans , Neuroglia , Animais , Caenorhabditis elegans/genética , Astrócitos , Fenômenos Biomecânicos , Proteostase , Matriz Extracelular/metabolismo , Junções Intercelulares
3.
Curr Biol ; 34(2): 361-375.e9, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181793

RESUMO

A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.


Assuntos
Mecanotransdução Celular , Poríferos , Animais , Células Endoteliais , Células Epiteliais , Água
4.
Nat Methods ; 20(12): 1971-1979, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884795

RESUMO

Brillouin microscopy is an emerging optical elastography technique capable of assessing mechanical properties of biological samples in a three-dimensional, all-optical and noncontact fashion. The typically weak Brillouin scattering signal can be substantially enhanced via a stimulated Brillouin scattering (SBS) process; however, current implementations require high pump powers, which prohibit applications to photosensitive or live imaging of biological samples. Here we present a pulsed SBS scheme that takes advantage of the nonlinearity of the pump-probe interaction. In particular, we show that the required pump laser power can be decreased ~20-fold without affecting the signal levels or spectral precision. We demonstrate the low phototoxicity and high specificity of our pulsed SBS approach by imaging, with subcellular detail, sensitive single cells, zebrafish larvae, mouse embryos and adult Caenorhabditis elegans. Furthermore, our method permits observing the mechanics of organoids and C. elegans embryos over time, opening up further possibilities for the field of mechanobiology.


Assuntos
Caenorhabditis elegans , Microscopia , Animais , Camundongos , Peixe-Zebra , Luz , Lasers
5.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577507

RESUMO

A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.

6.
Nat Methods ; 20(5): 755-760, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997817

RESUMO

Brillouin microscopy can assess mechanical properties of biological samples in a three-dimensional (3D), all-optical and hence non-contact fashion, but its weak signals often lead to long imaging times and require an illumination dosage harmful for living organisms. Here, we present a high-resolution line-scanning Brillouin microscope for multiplexed and hence fast 3D imaging of dynamic biological processes with low phototoxicity. The improved background suppression and resolution, in combination with fluorescence light-sheet imaging, enables the visualization of the mechanical properties of cells and tissues over space and time in living organism models such as fruit flies, ascidians and mouse embryos.


Assuntos
Desenvolvimento Embrionário , Microscopia , Animais , Camundongos , Microscopia/métodos , Drosophila , Embrião não Mamífero , Imageamento Tridimensional/métodos
7.
Opt Express ; 31(2): 2292-2301, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785246

RESUMO

Several important questions in biology require non-invasive and three-dimensional imaging techniques with an appropriate spatiotemporal resolution that permits live organisms to move in an unconstrained fashion over an extended field-of-view. While selective-plane illumination microscopy (SPIM) has emerged as a powerful method to observe live biological specimens at high spatio-temporal resolution, typical implementations often necessitate constraining sample mounting or lack the required volumetric speed. Here, we report on an open-top, dual-objective oblique plane microscope (OPM) capable of observing millimeter-sized, freely moving animals at cellular resolution. We demonstrate the capabilities of our mesoscopic OPM (MesOPM) by imaging the behavioral dynamics of the sea anemone Nematostella vectensis over 1.56 × 1.56 × 0.25 mm at 1.5 × 2.8 × 5.3 µm resolution and 0.5 Hz volume rate.


Assuntos
Imageamento Tridimensional , Microscopia , Animais , Microscopia/métodos , Imageamento Tridimensional/métodos
8.
Proc Natl Acad Sci U S A ; 120(1): e2215958120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574688

RESUMO

The cnidarian Nematostella vectensis has developed into a powerful model system to study the mechanisms underlying animal development, regeneration, and evolution. However, despite the significant progress in the molecular and genetic approaches in this sea anemone, endogenous protein tagging is still challenging. Here, we report a robust method for knock in for Nematostella using CRISPR/Cas9. As an outcome, we generate endogenously tagged proteins that label core molecular components of several cellular apparatus, including the nuclear envelope, cytoskeleton, cell adhesion, endoplasmic reticulum, cell trafficking, and extracellular matrix. Using live imaging, we monitor the dynamics of vesicular trafficking and endoplasmic reticulum in embryos, as well as cell contractility during the peristaltic wave of a primary polyp. This advancement in gene editing expands the molecular tool kit of Nematostella and enables experimental avenues to interrogate the cell biology of cnidarians.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Adesão Celular
9.
Curr Biol ; 32(21): 4707-4718.e8, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36115340

RESUMO

Development is a highly dynamic process in which organisms often experience changes in both form and behavior, which are typically coupled to each other. However, little is known about how organismal-scale behaviors such as body contractility and motility impact morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organismal size, shape, and behavior. Using quantitative live imaging in a large population of developing animals, combined with molecular and biophysical experiments, we demonstrate that the muscular-hydraulic machinery that controls body movement also drives larva-polyp morphogenesis. We show that organismal size largely depends on cavity inflation through fluid uptake, whereas body shape is constrained by the organization of the muscular system. The generation of ethograms identifies different trajectories of size and shape development in sessile and motile animals, which display distinct patterns of body contractions. With a simple theoretical model, we conceptualize how pressures generated by muscular hydraulics can act as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illustrate how organismal contractility and motility behaviors can influence morphogenesis.


Assuntos
Anêmonas-do-Mar , Animais , Larva , Morfogênese
10.
J Biomed Opt ; 27(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383428

RESUMO

SIGNIFICANCE: Highly sensitive detection is crucial for all-optical photoacoustic (PA) imaging. However, free-space optical detectors are prone to optical aberrations, which can degrade the pressure sensitivity and result in deteriorated image quality. While spatial mode-filtering has been proposed to alleviate these problems in Fabry-Pérot-based pressure sensors, their real functional advantage has never been properly investigated. AIM: We rigorously and quantitatively compare the performance of free-space and fiber-coupled detectors for Fabry-Pérot-based pressure sensors. APPROACH: We develop and characterize a quantitative correlative setup capable of simultaneous PA imaging using a free space and a fiber-coupled detector. RESULTS: We found that fiber-coupled detectors are superior in terms of both signal level and image quality in realistic all-optical PA tomography settings. CONCLUSIONS: Our study has important practical implications in the field of PA imaging, as for most applications and implementations fiber-coupled detectors are relatively easy to employ since they do not require modifications to the core of the system but only to the peripherally located detector.


Assuntos
Tomografia Óptica
11.
Opt Lett ; 47(23): 6089-6092, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219179

RESUMO

Optical resonators are some of the most promising optical devices for manufacturing high-performance pressure sensors for photoacoustic imaging. Among these, Fabry-Perot (FP)-based pressure sensors have been successfully used for a multitude of applications. However, critical performance aspects of FP-based pressure sensors have not been studied extensively, including the effects that system parameters such as beam diameter and cavity misalignment have on transfer function shape. Here, we discuss the possible origins of the transfer function asymmetry, ways to correctly estimate the FP pressure sensitivity under practical experimental conditions, as well as show the importance of proper assessments for real-world applications.

12.
Nat Methods ; 18(10): 1253-1258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594033

RESUMO

Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neuroimagem/métodos , Animais , Astrócitos/metabolismo , Sinalização do Cálcio , Feminino , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Software , Antígenos Thy-1
13.
Commun Biol ; 4(1): 1133, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580426

RESUMO

In early mammalian development, the maturation of follicles containing the immature oocytes is an important biological process as the functional oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. Despite recent work demonstrating the regulatory role of mechanical stress in oocyte growth, quantitative studies of ovarian mechanical properties remain lacking both in vivo and ex vivo. In this work, we quantify the material properties of ooplasm, follicles and connective tissues in intact mouse ovaries at distinct stages of follicle development using Brillouin microscopy, a non-invasive tool to probe mechanics in three-dimensional (3D) tissues. We find that the ovarian cortex and its interior stroma have distinct material properties associated with extracellular matrix deposition, and that intra-follicular mechanical compartments emerge during follicle maturation. Our work provides an alternative approach to study the role of mechanics in follicle morphogenesis and might pave the way for future understanding of mechanotransduction in reproductive biology, with potential implications for infertility diagnosis and treatment.


Assuntos
Folículo Ovariano/embriologia , Folículo Ovariano/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Citoplasma , Feminino , Mecanotransdução Celular , Camundongos/embriologia , Camundongos/crescimento & desenvolvimento , Microscopia
14.
Opt Lett ; 46(14): 3480-3483, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264243

RESUMO

Zernike polynomials are one of the most widely used mathematical descriptors of optical aberrations in the fields of imaging and adaptive optics. Their mathematical orthogonality as well as isomorphisms with experimentally observable aberrations make them a very powerful tool in solving numerous problems in beam optics, most notably the recent developments of adaptive optics for correcting beam aberrations. However, Zernike aberrations show cross coupling between individual modes when used in combination with Gaussian beams, which are ubiquitous in most practical applications, an effect that has not been extensively studied. Here we propose a novel framework that is capable of explaining the fundamental cross-compensation of Zernike type aberrations, in both low-aberration and high-aberration regimes. Our approach is based on analyzing the coupling between Zernike modes and different classes of Laguerre-Gauss modes, which allows investigating aberrated beams not only on a single transverse plane but also during their 3D propagation.

15.
Photoacoustics ; 23: 100276, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34123725

RESUMO

All-optical ultrasound detection bears a number of unique advantages for photoacoustic tomography, including the ability for high resolution sampling of the acoustic field and its compatibility with a wide variety of other optical modalities. However, optical schemes based on miniaturized cavities are sensitive to optical aberrations as well as manufacturing-induced cavity imperfections which degrade sensor sensitivity and deteriorate photoacoustic image quality. Here we present an experimental method based on adaptive optics that is capable of enhancing the overall sensitivity of Fabry-Pérot based photoacoustic sensors. We experimentally observe clear improvements in photoacoustic signal detection as well as overall image quality after photoacoustic tomography reconstructions when applied to mammalian tissues in vivo.

16.
Cell Rep ; 35(9): 109191, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077727

RESUMO

The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.


Assuntos
Pressão Sanguínea/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Comportamento Animal , Fluoresceína/metabolismo , Gânglios Espinais/fisiologia , Frequência Cardíaca/fisiologia , Camundongos Transgênicos , Receptor trkC/metabolismo
17.
Commun Biol ; 4(1): 556, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976362

RESUMO

Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Microscopia Intravital/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Fluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tomografia/métodos , Carga Tumoral/fisiologia
18.
Nat Methods ; 18(5): 557-563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963344

RESUMO

Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.


Assuntos
Aprendizado Profundo , Coração/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Animais , Fenômenos Biomecânicos , Cálcio/química , Larva/fisiologia , Oryzias/fisiologia , Reprodutibilidade dos Testes , Peixe-Zebra/fisiologia
19.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277250

RESUMO

The biophysical and biochemical properties of live tissues are important in the context of development and disease. Methods for evaluating these properties typically involve destroying the tissue or require specialized technology and complicated analyses. Here, we present a novel, noninvasive methodology for determining the spatial distribution of tissue features within embryos, making use of nondirectionally migrating cells and software we termed "Landscape," which performs automatized high-throughput three-dimensional image registration. Using the live migrating cells as bioprobes, we identified structures within the zebrafish embryo that affect the distribution of the cells and studied one such structure constituting a physical barrier, which, in turn, influences amoeboid cell polarity. Overall, this work provides a unique approach for detecting tissue properties without interfering with animal's development. In addition, Landscape allows for integrating data from multiple samples, providing detailed and reliable quantitative evaluation of variable biological phenotypes in different organisms.


Assuntos
Polaridade Celular , Peixe-Zebra , Animais , Peixe-Zebra/genética
20.
Biophys Rev ; 12(3): 615-624, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32458371

RESUMO

Many important biological functions and processes are reflected in cell and tissue mechanical properties such as elasticity and viscosity. However, current techniques used for measuring these properties have major limitations, such as that they can often not measure inside intact cells and/or require physical contact-which cells can react to and change. Brillouin light scattering offers the ability to measure mechanical properties in a non-contact and label-free manner inside of objects with high spatial resolution using light, and hence has emerged as an attractive method during the past decade. This new approach, coined "Brillouin microscopy," which integrates highly interdisciplinary concepts from physics, engineering, and mechanobiology, has led to a vibrant new community that has organized itself via a European funded (COST Action) network. Here we share our current assessment and opinion of the field, as emerged from a recent dedicated workshop. In particular, we discuss the prospects towards improved and more bio-compatible instrumentation, novel strategies to infer more accurate and quantitative mechanical measurements, as well as our current view on the biomechanical interpretation of the Brillouin spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...